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Irreducible representations of the symmetry groups of 
polymer molecules I 

I B Boiovid?, M VujiEiCC and F Herbut t  
Department of Physics, Faculty of Science, The University. Studentski trg 12,  Belgrade. 
Yugoslavia 

Received 30 March 1978 

Abstract. The line groups are the symmetry groups of stereoregular polymer molecules. 
For quantum mechanical applications one needs their unitary irreducible representations 
(reps). A11 the reps of the line groups whose isogonal point groups are C,, C,,, Cnh, S2", 
and D, are constructed. For some line groups the reps are obtained as products of the reps 
of the translational subgroup and the reps of the isogonal point group. The rest of the reps 
are induced from those of the corresponding in\ariant subgroups of index two. 

1. Introduction 

In a previous paper (VujiEid et a1 1977, to be referred to as LG) we constructed the line 
groups, which are the symmetry groups of stereoregular polymer molecules. In fact, 
they describe exactly the symmetries of three-dimensional objects translationally 
periodic along a line. An example of such an object is a single infinite linear chain, 
which is the most important model in theoretical investigations of stereoregular 
polymer molecules. 

Our  method of constructing line groups proved to be very useful in the con- 
struction of all unitary irreducibte representations (reps) of the line groups (BoioviC 
1975). These reps or  their characters are what is needed in many quantum mechanical 
treatments of physical properties of polymer molecules. We shall point out some of 
these applications (Boiovid et a1 1976). 

The symmetry properties of polymer molecules are used extensively in explaining 
vibrational spectra of these molecules (analysis by means of normal vibrations, and 
related processes of infrared absorption and Raman scattering). For the study of 
fundamental normal vibrations (wavevector k = 0), as well as for one-phonon pro- 
cesses in which the change of k can be neglected, one  can make use of an  approximate 
symmetry-the factor group L/T, where L is the line group and T its translational 
subgroup. This means that one can utilise reps of the isogonal point group P iso- 
morphic to L/T instead of reps of line groups L. One  can find examples of using the 
factor group symmetries in Tobin (1955), Krimm (1960), Zbinden (1964), Elliott 
(1969), and Oleinik and Kompaneyets (1968). 

However, when the wavevector k is different from zero (non-fundamental normal 
vibrations, two-phonon and multiphonon processes) one  needs reps of line groups 

t Also at Institute of Physics, Belgrade, Yugoslavia. 
t Also at Institute 'Boris Kidri?.. Vinca, Belgrade, Yugoslavia. 
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(Higgs 1953, Tobin 1960). Data about such processes have become available due to 
neutron diffraction experiments (Allen 1972). The selection rules for two-phonon 
processes are important and should be investigated. 

Reps of crystallographic space groups have been used extensively in the analysis of 
the electron band structure of crystals (Slater 1972, Jannsen 1973, Lax 1974). The 
reps of the line groups can be expected to be even more useful in investigating 
electron spectra of polymer molecules (for infinite polymer chains, unlike in the case 
of crystals, the k vectors possessing symmetry usually outnumber the rest). There has 
been a great number of papers dealing with electron energy spectra (band structure) 
for polymer molecules in recent years. This progress has been made possible by the 
development of very elaborate computer programs for different semi-empirical and ab 
initio (Hartree-Fock) calculations developed by Ladik and co-workers, and AndrC 
and co-workers (AndrC and Ladik 1975) etc. In these calculations symmetries (apart 
from the translational ones) have been made very little use of (some of the line groups 
were employed by McCubbin 1975 and Merkel 1977). The reps of the line groups can 
provide us with symmetry-adapted basis functions for self-consistent calculations, 
make them much faster and easier, and furnish us with a symmetry labelling for 
energy bands, as well as give selection rules for different processes, etc. However, up 
to now reps of line groups have been published, to our knowledge, only for the 
simplest of the line groups (Tobin 1960, McCubbin 1975, Merkel 1977). It is the aim 
of the present work to fill that gap to some extent (deriving all the reps of the line 
groups whose isogonal point groups are C,, C,,, C , h ,  S2,, and D,) and to make 
possible more extensive use of symmetries in polymer physics. In the next paper in 
this series we shall complete this task by giving the reps for the line groups whose 
isogonal point groups are D,d and D,h. 

In the case when the Hamiltonian is invariant under time reversal 8, the symmetry 
group is enlarged: L+8L. It is interesting to learn if the degeneracy of the levels is 
doubled or not. In a forthcoming paper we shall apply Herring's criterion (Herring 
1937) to all reps of line groups to find the answer to the problem of the degeneracy of 
levels. 

2. Method of construction of reps 

Every line group L has an invariant subgroup T consisting of one-dimensional pure 
translations (cf LG): 

T={ (E l t ) l t=O, i l ,  * 2 , .  . .}, (1) 

where E is the unit element in the isogonal point group P = L/T. T is cyclic and its reps 
are easily found: 

dk(Elt)  = exp(ikta), (2) 

where a is the translational period, and k takes on the values from the interval 
(--7r/a, ~/a] - the  first Brillouin zonet. 

+ T h e  translational group is usually made finite by means of the periodic (or Born-von K h n a n )  boundary 
conditions: (EIN)= (EIO), where N is an arbitrary large integer (Streitwolf 1971). Then k takes on only N 
values from ( -T /u ,  T / u ] .  Hence finite-group theory can be used. 
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Each line group L can be enpressed as the sum of /PI cosets of T: 

where vi E [0, 1) are fractional translations, and Ri E P (cf LG). Every point group P 
isogonal to a line group is axial, i.e. it leaves the line of translations invariant. Its 
elements R can be of two types: of R' type if  Ra =a, or of R -  type if Ra = -a. A 
line group in which all R, in (3) are of R' type is called of L' type itself. Otherwise, 
half of the R, are R' and the other half R- ,  and then the line group is called of L- 
type. The reps of line groups are found in this paper differently for groups of L' type 
and differently for those of L- type. 

2.1. Reps of line groups of L' type 

To begin with, one may try to construct reps of a line group of L' type by multiplying 
reps d k ( T )  (cf (2)) of the translational subgroup T and reps D,(P) of the isogonal point 
group P, with an extra factor exp(ikua) when the group is non-symmorphic: 

kDm(RIC + t ) =  exp[ik(v + t)a]D,,(R). (4 1 
The requirement of homomorphism gives 

kDm ( R  It' .f t)kD, (ai Mi 4- S )  = k D m  ( R a  /U 4- t -t RIY -4- RS). 

This is obviously fulfilled if 

exp[ik(w + s ) a ]  = exp[ik(Rw + Rs)a],  ( 5 )  

and this is indeed satisfied since all rotations R in L' are of R' type. The irreducibility 
of k D m ( k r )  follows from that of D m ( P ) ,  as the d k v )  are one-dimensional. Two reps 
kDm(L+) and k,D,,(L') are equivalent, i.e. their characters are equal, if and only if 
k = k' and nt = m'. If one has a complete set of reps D, (P) ,  then construction (4) 
gives a complete set of reps for L'. This is easily proved if  one applies the Burnside 
theorem: 

C 1 (dim k&(L+))* = N 1 (dim D,(P)>~ = N / P ~  = I L + ~ .  
k m  m 

Therefore, in order to obtain a complete set of non-equivalent reps of any line group 
of L' type, it is sufficient to know all the reps of the corresponding isogonal axial point 
group (C, or C,,, n = 1, 2 , .  . . , cf LG). Though they are known in the literature, we 
derive them in this work by the same method as for line groups and achieve a concise 
form, unique for each family of point groups (i.e. for those differing in the order of the 
main axis only). This form shortens immensely our derivation of the reps of the line 
groups. 

2.2. Reps of line groups of L -  type 

Each line group of L- type can be written as (cf LG): 

L- = L+ + (R  -/o)L+. (6) 
Reps of L- can be induced from those of its invariant subgroup L'. For this besides 
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kDm(L+) we need its conjugate rep kDm(L+) defined by 

k D m ( R + l u  + f ) =  kDm[(R-iO)(R+lU +f)(R-10)-']. ( 7 )  

If the two reps kDm(L+) and kDm(L+)= E&$+) are not equivalent, then from the two 
of them one can induce one  rep of L- and we denote it by LQE(L-) (the induction 
procedure is explained in Jansen and Boon 1967): 

Obviously, 

( ~ ~ ' 1 - u  - t ) =  ( R - ~ O ) ( R + / C  + t ) ,  

:Q",(R-RiIv - t )  = P :Q;(R'Iu + r ) ,  
and 

where 

and I is the unit matrix of the same dimension as kDm, P being the representative of 
(R-IO). The other possible rep %Qf(L-) obtainabje in this way from the same two reps 
r;O,,-,(L') and k D m ( L + )  is obviously equivalent to :():they have the same 
characters, In the actual construction of the reps below we evaluate E and rii as 
functions of k and m respectively, and restrict the latter to suitable intervals so that 
each tQE appears only once. 

If we take two ditferent pairs of conjugate and  non-equivalent reps of L', then the 
reps of L- which are furnished by them are not equivalent (Zak 1960). 

The  mutally conjugate reps d Im(L+)  and c D * ( L + )  are not equivalent when k # 0 
and k # T / U .  Proof is easily obtained since for all (R'Ir + t ) E  L' the requirement 

kDm(Lf)- kdm(L+) 

implies equality of characters, which in turn gives 

X ~ ( R - R + ( R - ) - ~ ) / X , ( R + )  = exp[2ik(v + t ) a ] ,  (9 ) 
where xm is the character of the rep  D, of the isogonal point group of L'. But this is 
not true (because only one  side depends on t )  unless k = 0 or  k = T / U  (with U = 0). 
Therefore, the reps of L- for k # 0 and k f T / U  can always be obtained by induction 
from those of L' by means of the construction (8a, 6). 

For k = 0 condition (5) is fulfilled SO that for this point the reps of L- are the same as 
the reps of its isogonal point group (see (4)): 

d ' m  ( R  /U + f )  = Dm ( R  ), (10) 

for all ( R l u + t ) ~ L - .  
For k = x / a ,  let us consider first the symmorphic line groups, i.e. those which are 

semi-direct products of their translational and rotational subgroups L = T A  P. In this 
case condition (5) is satisfied since the fractional translations are all zero. Hence, 
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construction (4) can be applied in this case too: 

r r l a D m  (R  It) = (-1 ( R  (11) 

for all (R/ t )E L. 
For non-symmorphic line groups, on t5e other hand, condition ( 5 )  is not satisfied 

and one has to check for each of them and for every m whether TT/aDm(L+) and 
rr /aDm(L+) are equivalent or not. If they are not equivalent one applies construction 
(8a, b) .  If they are equivalent, i.e. if ii/aDm(L+) is self-conjugate, then we take resort 
to the fact that (R-10) in (6) is of order two in all these groups, so that the line group L-. 
is a semi-direct product of its two subgroups: L' and the cyclic one J = {(EIO), (R-IO)}. 
Then the two reps k D z ( L - )  can be constructed in a direct-product-like manner 
(Jansen and Boon 1967): 

This construction reflects the fact that the cyclic subgroup J has only two one- 
dimensional reps, (1, 1) and {l, -I}. Therefore, every self-conjugate rep of L' gives 
two non-equivalent reps of L- (Zak 1960). 

In the manner described above one obtains a complete set of non-equivalent reps of 
L-, and this can be proved by using the Burnside theorem: 

1 (dim oDm(L-))2+ 1 (dim iQ:(L-))2 +I (dim iilaDZ (L-))* 
m O<k-:iila m m 

+ (dim ,,,a: 
m 

= iP-1 + ( N / 2  - 1)4/P'/ + 21P'/ = NiP-1 = JL-1, 

where m' and m" enumerate for k = r / a  the self-conjugate reps and those which are 
not, respectively; and P- and P' are the isogonal point groups of L- and L', respec- 
tively, and therefore /P  ~ = 21P'i. 

3. Construction of the reps of the line groups of Lc type 

3.1. Reps of the line groups whose isogonal point groups are C,, n = 1,  2, 3, . . . 
The point groups C, are cyclic, so that the general form of their elements is Ci, 
s = 0, 1, . . . , n - 1, where C,, is a rotation through a = 2 r / n  around the z axis. The 
complete set of reps for C, is obviously given by 

A m ( C i ) =  exp(imsa), (13) 

0 ,=1 ,*2 , .  . . , * ( n - l ) / 2  if n is odd (14) 

if n is even. (15) 

where A always denotes one-dimensional reps, and m takes on n valuest: 

m = {  
0, i l ,  * 2 ,  . . . , * ( n  - 2 ) / 2 ,  n / 2  

Note that the rep with m = -n /2  (for n even) is the same as that with m = n / 2 .  

.:. This choice of the range of m is such that the action of the operators nu, U, and 0 is as simple as possible. 
Hence, the mutally conjugate indices m and r i ~  are easily found, and, in most cases, differ in sign only  (cf 
(171, (24), and ( 2 5 ) ) .  
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There are two familiest of line groups whose isogonal point groups are C,: Ln, 
n = 1 , 2 , 3 , .  . . (note that L 1  =T), and Ln,, n = 2 , 3 , 4 , .  . . , p = 1 , 2 , .  . . , n -- 1 (cf LG). 
The corresponding general forms of the elements are: (Ci It) and (Ci lFr(sp/n)+ t ) ,  
where Fr(x) denotes the fractional part of x (cf LG). A special case is L(2q),, where 
n = 2q, q = 1,2 ,3 ,  . . . and p = q, when the general form of the elements is (Ci  lf/2 + 
t ) ,  where f = 0 if s is even and f = 1 if s is odd (cf below the line groups L(2q),mc and 
L(2q),/m, that have L(2q), as their invariant subgroup). 

For the construction of the reps we use formula (4) with (13): 

For p = 0 (16) gives the reps of Ln, and for p = 1 , 2 ,  . . . , n - 1 those of Ln,. For k = 0 
and k = r / a  one has somewhat simpler forms exhibited in tables 1 and 2. 

Table 1. The reps of the line groups Ln, n = 1 , 2 ,  3 , .  , , (cf (16)) with a = 2n/n ,  s = 
0, 1, . . . , n - 1; for m see (14) and (15). 

0 O A m  exp(imsa) 
0 < / k  1 <: a l a  kA m exp(ikta) exp(imsa) 
7i.l a ?rl .A m (- 1)' exp(imsa) 

Table 2. The reps of the line groups Ln,, n = 2 , 3 , 4 , .  . . , p = 1.2,  . . . , n - 1 (cf (16)), for 
cy. s and m see the caption of table 1. In the special cases when n = 2q, p = q, q = 
1 , 2 . 3 ,  , . . , Fr(sp/n)= f/2, where f = 0 for s even, and f = 1 for s odd. 

0 d m  exp(imsa) 
0 < / k l <  n / a  k A m  exp{ik(Fr(sp/n)+ t]a} exp(imsa) 
n l a  d a A m  ( -1)Wsp/n)+'  exp(imsa) 

3.2. Reps of the line groups whose isogonal point groups are C,,, n = 1, 2, 3, . . . 
The point groups C,,, n = 2 , 3 , 4 , .  . . are obtained as semi-direct products of the 
corresponding point group C, with C1, ={E,  mu}, where U, is the reflection in a 
vertical plane (containing the z axis): 

(cf LG). Consequently, the general form of the elements is either C i  or u,Ci, 
n = 1 , 2 , 3 , .  . , , s = 0,1 , .  , . , n - 1. The reps of C,, are obtained from those of C, by 
induction (in analogy with (8a, b ) )  or in a direct-product-like manner (in analogy with 
(12~2, b)) .  For that we have to conjugate each rep Am(C,) (equation (13)) by U, and 

t We call a family that set of line groups (differing in the value of n and possibly in the symbols by which 
they are denoted) for which the general form of elements is the same, i.e. each row in table 1 of LG. 
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find out which are the conjugate pairs and which are the self-conjugate reps. We thus 
obtain 

Am(C",= A,(u,C',U;' )= Am(C,')= A-m(C:), (17) 

which is a consequence of the generator relation Cnuu = a,C;-' for C,,. From (13) 
and (17) it follows that: 

(i) A&,) = A0(C,)-a self-conjugate rep; 
(ii) A,,,(C,) and A-,(C,)=A,(C,)-a pair of conjugate reps 

for m = 1 , 2  , . . . ,  ( n - 1 ) / 2  if n = 3 , 5 , 7  , . . .  (18a)  

or m = 1 , 2  , . . . ,  ( n - 2 ) / 2  if n = 4 , 6 , 8  , . . . ;  (18b) 

(15)). 
(iii) An/2(Cn)=An/2(Cn)--a self-conjugate rep for n even (see the remark after 

Each self-conjugate one-dimensional rep of C, furnishes two one-dimensional 
reps for C,, (cf (124  b)) ,  which we shall denote by A (when u, is represented by 1 )  
and by B (when U~ is represented by -1). Each pair of conjugate reps A,, A-, of C, 
will give one two-dimensional rep E,,-, (cf (8u, 6 ) )  of C,, (see table 3). Note that for 
C1, and C2, there are no two-dimensional reps (cf ( 1 8 ~ 2 ,  b)). 

Table 3. The reps of the point groups C,,, n = 1 , 2 , 3 , .  . . , where a = 2a/n ,  s = 
0, 1 , .  . . , n - 1, and the range of m is specified by (18a, b), 

) P = ( O  '1. exp(imsa) 0 
M = (  

O exp(-imsa) ' 1 0  

reps c:, a;c:, 
1 
-1 
PM 

and only for n = 2 ,4 ,  6 , .  

There are three families of line groups whosc isogonal point groups are C,, (cf LG): 

.: In contrast to table 1 of LG here we use f (see the caption of table 2)  because it makes the 
presentation of the reps considerably more compact (see tables 6 and 9). It should be 
noted that in table 1 of LG the integer 2r was always misprinted as 2,. 
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The  reps of these line groups are obtained (tables 4, 5 and 6) by construction (4). 

Table 4. The reps of the line groups Lnm, n = 1 , 3 , 5 ,  . , . and Lnmm. n = 2.4 .6 ,  . . . . For 
a, s, m, M, and P see the caption of table 3. 

- a / a  < k s a la  kAU exp(i k fa)  exp(i kra ) 
-n/a < k S a / a  kBo exp(i kfa) -exp(ikta) 
-a la  < k S a l a  kEm,-m exp(ikta)M exp(ikra)PM 

and only for n = 2 , 4 ,  6 ,  . . . 

-a la  < k s H / U  kA,,2 (-1)' exp(ikra) (-1)' exp(ikra) 
- n / a  < k C a la  &,,I2 (-1)' exp(ikta) -(-l)' exp(ikta) 

Note that in the case of L l m  and L2mm there are no  two-dimensional reps (cf the 
note below table 3). 

Table 5. The reps of the line groups Lnc. n = 1 , 3 ,  5 , .  . . and Lncc, n = 2 , 4 %  6 , .  , , , 
Concerning CY. s, m, M ,  and P see the caption of table 3. 

k reps (C', 80 (uuc:ll/2+f) 
- .- 

-ala i k n/a kA, exp(i kra ) exp[ ik( l /?  + r)a] 
- a l a  < k S x / a  kB0 exp(i kta)  - e x p [ i k ( l / 2 + r ) a ]  
- a / a  < k S n / a  kEm,-,, exp(ikra)M e x p [ i k ( l / 2 + r ) a ] P M  

and only  for n = 2 .  4. 6 , .  . , 
________ 

- n f a < k s n / a  kAn/2 (-1)' exp(ikra) (-1)' e x p [ i k ( l / 2 + r ) a ]  
- a / a  k 5 a l a  kB,,;Z (-1)' exp(ikta) -(-l)' exp[ ik( l /2+r)a]  

For k = r / u ,  exp(ikta)= (-l)', exp [ ik ( l /2+ t )a ]  = i(-l)'. Note that in the case of L l c  
and L2cc there are no two-dimensional reps. 

Table 6. The reps of the line groups L(Zq),mc. n = ?q = 2 , 4 , 6 ,  . . . As to a, s, m, M ,  and P 
see the caption of table 3. Concerning f see the caption of table 2. 

~~ 

k reps (C If12 + r )  ( U " G  If12 + 1) 

D -. 
exp[ik(f/2+ t ) a ]  exp[ik(f /2+ r )u ]  k A u  

'd kB0 exp[ik(f /2+r)a]  -exp[ik(f/2+ r)a] 
'!, k E m , - m  e x p [ i k ( f P f  OalM 
< k A n / 2  (-1)' exp[ik(f/2 f t )a ]  (-1)' exp[ ik( f /? f t )a ]  

exp[ik(f /2+ r )a ]PM Y 

k B n / Z  (-1)' exp[ ik( f /2+t )a]  -(-l)' exp[ ik( f /2+t )a]  

For k = r/ur,  exp[ik(f/2+ [ ) a ]  = if(--l)'. Note that in the case of L2,mc there are no  
two-dimensional reps. 
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4. Construction of the reps of the line groups of L- type 

4.1. Reps of the line groups whose isogonal point groups are C n h ,  n = 1, 2, 3, . . . 
The point groups Cnh, n = 2 , 3 , 4 , .  . . can be obtained as direct products of the 
corresponding point groups C, with C l h  ={E, m,}, where (+h is the reflection in the 
horizontal, i.e. x y  plane: 

c n h  = C n  @ C l h  =cn f(+hCnr n = 2 , 3 , 4 ,  

(cf LG). Therefore, the general form of the elements of c , h  is either Cf, or ChCf,,, 

n = 1 , 2 , 3 ,  . . . , s = 0, 1, . . . , n - 1. All the reps of C, are self-conjugate with respect 
to Cnh, because commutes with the rotations c:. Hence, the reps of c , h  are 
constructed by a method analogous to (12a,b)  Note that all the reps are one- 
dimensional since the groups are Abelian. 

Table 7. The reps of the point groups C n h ,  n = 1, 2,3,  . . . . For a ,  s, and m see the caption 
of table 1. 

A: exp(imsa) *exp(imsa) 

There are two families of line groups whose isogonal point groups are C , h  (see LG): 
(1) Ln/m = Ln + (aklO)Ln, n = 1 , 2 , 3 , .  . . with the general form of the elements 

(2) L(2q),/m = L(2q), + ((Thjo)L(2q)q, n = 2q = 2 , 4 ,  6, . . . with the general form of 

For k = 0 the reps oA: of the above line groups are the same as A: of the 

For 0 < Ikl< n / a  one has the conjugate reps (see table 1): 

(Cf, It) and ((T~CS~ It); 

the elements (C: I f /2  + t ) ,  (mC: 1 f /2  + t ) .  

corresponding point groups C , h  (see table 7). 

kAm(C: It) = exp(-ikta) exp(imsa) = -kAm(C: I t ) ,  (19) 

(20) 

since ( U ~ I O ) ( C :  l t ) ( (+hlO)- '  = ( ~ f ,  1-t). Similarly (see table 21, 

k&,,(Cf, 1 f / 2 +  t )  = exp(-ikta) exp(-ifka/2) exp(imsa) = -kAm(C: 1 f/2 + t ) ,  

since ((+klO)(C: If/2 + t ) ( a h I O ) - l  = (c: I-f/2 + t ) .  
The two reps kAm and -kAm of Ln and L(2q), give rise to a two-dimensional rep 

(via ( 8 4  b ) )  of Ln/m and L(2q),/m, respectively, which we denote by -LEm. We limit 
k to the interval (0, T / u ) ,  so that -k belongs to ( - ~ / a ,  0) .  

For k = T / U  we have to analyse separately the case of Ln/m and separately that of 
L(2q)Jm. The line groups Ln/m are symmorphic (table 8), hence their reps for 
k = rr/a are constructed according to (11). As to L(2q),/m (table 9), we have to 
conjugate =lnAm(Cf, I f/2 + t )  = i'(-l)' exp(imsa) (cf table 2) by ( ( + h / O ) .  One gets 

,/ ,A,(~",f/2+ t ) =  (-iY(--l)' exp(imsa)= i'(-l)' exp[i(m -q ) sa] ,  

since (-iY = if(- 1)' = i' exp(-iqsa 1. 
Therefore, nlaA,(L(2q)q) and ,lnA,--q(L(2q)q) are two conjugate reps for which 

m runs through the values 1, 2 , .  . . , q (i.e. m > O ,  cf (15)), and m -q takes on the 
other half of values in (15). 

(21) 
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Table 8. The reps of the line groups Ln/m, n = 1, 2, 3 , .  . . (see (10). table 7, (8a, b), (19) 
and (11)). For a, s, and m see caption of table 1 ;  

exp(ikra) 0 
0 exp(-ikta) 

P=( 

0 OA : exp(imsa ) *exp(imsa ) 
0 < k < rr/a -:Em exp(imsa)K exp(imsa)PK 
a/ a -,A: (- 1)‘ exp(imsa) *(-I)’ exp(imsa) 

Table 9. The reps of the line groups L(2q),/m, n = 2q = 2 , 4 , 6 , .  . . (see (lo), table 7,  
@a, b) ,  (20) and (21)). For a and s see the caption of table 1, for P and K that of table 8, 
for f that of table 2, 

The range of m is given by (15), except for k = n/ar, where m runs through only the 
positive half of the interval. 

4.2. Reps of the line groups whose isogonal point groups are S2,, n = 1, 2, 3, . . . 
A point group S2 ,  is a cyclic group of order 2n generated by ( T h C 2 n .  Since ( ( T ~ C ~ , , ) ~ ~  = 
c ~ S ,  = C: and ( ~ h c 2 n ) 2 s + 1  = rhC:”,+l = UhC2nCi (s = 0, I ,  . . . , n - 11, the group sZn 
has an invariant subgroup C,, so that 

S Z n  = C n + ( u h C Z n ) C n  

(see LG). The generator C h C 2 n  can be represented by each of the 2 n  roots of one: 

Ai(uhCZn) = exp(i j2~/2n) ,  j = 1 ,2 ,  . . . ,2n .  

For convenience we separate them into two sets and label them differently in order to 
preserve form (13) of the reps of the subgroup C, unaltered: A;(UhCz,)= 
exp(ima/2), where m takes on n values (see (14) and (15)); A,(ahCz,)= 
exp[i(m + n)a/2] = -exp(ima/2), which represent the remaining n roots distinct from 
AL. The other elements of S2, are represented by: [e~p(ima/2)]’~ = exp(imsa) and 
[e~p( ima/2) ]~””  = exp[im(s + 1/2)a] in the rep A:, and mutatis mutandis in the rep 
A,. 

There is only one family of line groups whose isogonal point groups are Szn, but 
they are denoted differently for n odd and n even: 

Lii, n = 1 , 3 , 5 , .  . . and L(G), n = 2 , 4 , 6 , .  . . 

(see LG). Each of these line groups has a group Ln as its invariant subgroup, so that it 
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can be written: 

Ln + ( m h C 2 n  lO)Ln, n = l , 2 , 3  , . . . .  ( 2 2 )  

Consequently, the general form of its elements is (Ci  It) and (ai,C~,Ci I t ) .  

Table 10. The reps of the point groups S2", n = 1 , 2 , 3 , .  . . . For a, s, and m see the 
caption of table 1. 

For k = 0 the reps oA; of these line groups are the same as AX, the reps of the 

For o < Ikl< r / a  one has (ahcZ,lo)(ci I f ) ( q , h C Z n l O ) - l  = (c; I-t), so that 
corresponding point groups SZn (see table 10). 

k A , ( h )  = -kAm(Ln) .  (23) 

This means that the two reps of Ln, namely, kAm(O < k < n / a )  and - k A m ( - r / a  < 
-k < 0) induce (as in @a,  6) )  one two-dimensional rep -:E, of LE or L(2n). 

Since all the line groups Lfi  and L ( 5 )  are symmorphic, it follows that for k = n / a  
their reps (table 11) are constructed as in (1 1). 

Table 11. The reps of the line groups LA, n = 1 , 3 , 5 , .  . . and L ( z ) ,  n =?, 4,6,. . . (see 
(10). table 10, (8a, b) ,  (23) and (1 1)). For a ,  s, m, K see the caption of table 8 

r / P = j  0 l ) .  
exp(1ma) 0 

0 0:; exp(imsa) *exp[im(s + 1/2)a]  
OC k C i r / a  -kEm exp(imsa)K exp(imsa)PK 
d a ,,A; (- 1)' exp(imsa) *(-l) 'exp[im(s+ 1 /2)a]  

4.3. Reps of the line groups whose isogonal point groups are D,, n = 1,2, 3, . . . 
The point groups D,, n = 2,3 ,4 ,  . . , are obtained as semi-direct products of C, with 
D1 = { E ,  U } ,  where U is a rotation through n around an axis perpendicular to the z 
axis (lying in the x y  plane): 

D, =C, A D1 =C, + UC,, n = 2 , 3 , 4 , ,  , . 
(cf LG). The elements of D, are thus and UC',, n = 1 , 2 , 3 ,  . . . ; s = 0,  1, . . . , n - 1. 

The point groups D, and C,, are isomorphic for the same n. Namely, each group 
D, is determined by its generators C, and U and the relations between them: 
C: = U 2  = E  and C,U = UCZ-' ; while C,, is determined by the generators C, and 
mu, and the analogous relations C: = mu = E  and C,m, = m,C",-'. Therefore, one has 
the isomorphism f: D, +Gnu given by f(C,)= C, and f ( U ) =  mu. Because of this the 
groups D, and C,, have the same reps. However, we use somewhat different notation 
for them since U and mu are physically different: U is of R -  type, and mu is of R' 

2 
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type. Instead of A, B and Em,-, used for the reps of C,,, here we make use of A', A -  
and E," respectively (table 12). 

Table 12. The reps of the point groups D,, n = 1, 2, 3 , .  . . (see table 3). 

reps C', ucf, 

A: 1 
E," M 

Ztl 
PM 

and only for n = 2 ,4 ,6 ,  

Note that for D1 and DZ there are no two-dimensional reps. 

They are (see LG): 

There are two families of line groups which have D, as their isogonal point groups. 

(1) L n 2 , n = l , 3 , 5  , . . .  and L n 2 2 , n = 2 , 4 , 6  , . . . ;  
(2) Ln,2, n = 3 , 5 , 7 , .  . . and Ln,22, n = 2 , 4 , 6 , .  . . , p = 1 , 2 ,  . . . , n - 1. 
All the members of the first family have Ln as their invariant subgroup, and can be 

decomposed in the following way: Ln +(UIO)Ln. Consequently, the general form of 
their elements is (Ci  It) and (UC; it), s = 0 ,  1, . . . , n - 1. 

For k = 0 their reps are given by (lo), and for k = n-/a by (11) (due to the 
symmorphic property of Ln2 and Ln22). 

For O <  lkl< 7r/a one has to conjugate the reps of Ln (cf table 1) by (UIO) to find 
out what the conjugate pairs are: (UlO)(C",it)(UlO)-' = (C;-"/-t) ,  which follows from 
Ut = -t (since U is of R- type) and C,U = UC;-' (the generator relation for D,). 
Consequently, 

kA,(Ln)= -kA-m(Ln), (24) 
where +A-,(C; i t)  = exp(-ikta) exp(-imscu) (see table 1). The two reps kAm and 
-kA-" of Ln (where O <  k < n-/a and m is given by (14) or (15)) give rise to one 
two-dimensional rep -LE-," of Ln2 and Ln22 (table 13). Note that for L12 and L222 
there are no two-dimensional reps for k = 0 and k = n-/a. 

Table 13. The reps of the line groups Ln2, n = 1 ,3 ,S ,  . . . and Ln22, n = 2 ,4 ,6 ,  . . . (see 
(lo), table 12, (Sa, b), (24), and (11)). For a, s, M and P see the caption of table 3; for K 
that of table 8. In  the case of oE,m and ,,,aE,m the range of m is given by (18a, b), and 
for ikE," by (14) or (15). 

k reps (C', I f )  (UC', I f )  

0 0-4: 1 *1 

ai a (- 1 If * ( - l ) I  

0 oELm M PM 
Q <  k < a l a  -;E," KM PKM 

ai a ,,/aEGm (-1)'M (-1)'PM 

and only for n = 2,4 ,6 ,  . . , 

0 o A Z :  (-1Y *(-l)* 
a/ a r r / n ~ n / 2  (-1)3+r * ( - l ) S + f  
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As far as the second family of line groups above is concerned, all its members have 
Ln, as their invariant subgroup and can be decomposed as Ln, + (U/O)Ln,. The 
general form of their elements is thus (C:  IFr(sp/n)+ t) and (UC; IFr(sp/n)+ t ) ,  n = 
2 , 3 , 4  , . . .  ; p = l , 2  . . . . ,  n - 1 .  

For k = 0 their reps are given by the reps of the corresponding D,. 
For 0 < jk 1 < n / a  we have, in analogy with (24), 

kAm (Ln,) = -4 - m  (Ln,), (25) 

where -kA-m(Ctl lFr(sp/n)+ t )  = exp{-ik[Fr(sp/n)+ ?]a} exp(-imscu) (see table 2). 
Therefore, two reps kAm and -kA-,,, of Ln,, where 0 < k < n / u  and m is given by (14) 
or (15), induce one two-dimensional rep -,“E;m of Ln,2 or  Ln,22. 

For k = n/a one has (see table 2): 

n/aAm(CL IFr(sp/n)+f) 

exp(imsCY) = (- l ) l - ’n t (rp’n)  exp[is(m +p/2)aI,  Fr(sp/ n ) + I  = (-1) 

since Fr(sp/n) = sp/n - Int(sp/n), and 

vlaAm(C; IFr(sp/n)+ t )  

= exp{-in[Fr(sp/n)+ t ] }  exp(-imsa) 

= (-1) 

solve the equation 

exp[-is(m +p/2)cr] = ,laA,(C:/Fr(sp/n)+ t ) .  lnt (sp/n  1 - r  

In order to calculate m, i.e. to find which rep is conjugate to that with m, one has to 

exp[is(rii +p/2)a]  = exp[-is(m + P / ~ ) c Y ] ,  

giving s ( t 5  + m  + p ) a  =0 ,  * 2 n , .  . . . Since this must be satisfied for every s = 
0, 1, . . . , n - 1, and because CY = 2rr/n, - 4 2  < m ZG n/2 and O s p  s n - 1, one obtains 
m + m + p  = {ll, giving finally 

-p - m, 

n - p - m ,  

if - 4 2  < -p - m s 4 2 ,  

if -n /2< n - p  - m  6 n/2. 
f i =  

It is easily seen that m in (26) can take on  all its values from the interval 
(-n/2, n/2], but in order to avoid repeated appearance of equivalent reps (see the 
comment below (8u, b)) ,  one confines m to half of that interval, i.e. m takes on all the 
values from the interval (-p/2, (n -p)/2) (see (27) and (28) below), and then m takes 
on the values from (-n/2, -p/2) and ((n -p)/2, n/2]. The two one-dimensional reps 
viaAm and n/aAim give rise to one two-dimensional rep n,nE:. 

To find out which reps are self-conjugate, one puts f i  = m in (26) and obtains two 
equations: 

m = -p/2, (27) 

m = (n - p ) / 2 .  (28) 

For odd n equation (27) has a solution for even p ,  and equation (28) for odd p ,  For 
even n neither equation has a solution for odd p ,  while both have one for even p .  
Table 14 gives the reps of the line groups Ln,2 and Ln,22. 
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Table 14. The reps of the line groups Ln,2, n = 3, 5 , 7 , .  . . and Ln,22, n = 2 , 4 , 6 , .  . . ; 
p = 1 , 2 , .  . . , n - 1 (see ( lo) ,  table 12, (2.5). (26), (27), and (28)). For a, s, M ,  and P see the 
caption of table 3, for K that of table 8. 

exp[ikFr(sp/n)a] 
N = (  0 

for m in oE,msee (18a. b) ,  and in -:E,"see (14)or (15); for m and A in mlaEZ see (26) 
and the comment after this equation. 

k 

0 o A  1 *1 
0 oE," M PM 
0 only for n even o'4:/2 *(-l)s 
O < k < r r / a  kEm NKM PNKM 
ai a ,,,A 6.42 (- 1 1% *(- 1)'P 
a/ a , , i A T n - p ) i Z  (- 1)'"P *(-l)'+?p 

- k  - m  

Ti a Ti 3: (- I ) ' ~ M H  (- 1)'PPMH 

Note that the reps rrlaAip,2 and T/aA&p),2 appear only when p and (n - p j  respec- 
tively are even. 
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